Detection of Sudan virus (SUDV) soluble glycoprotein (sGP) ELISA kit

IBT Bioservices cat# 0102-001, lot# 2009002

Instructions for use

1. Purpose:

For the quantitative measurement of SUDV soluble glycoprotein in mouse and non-human primate sera

2. Reagents supplied:

neagents supplied.										
Reagent	Lot Number	Conc.	Volume/	Storage						
supplied			aliquot	Temperature						
Capture Antibody	09.10.2020-A	453 μg/mL	135 μL	Long term -20°C Short term 4°C						
Standard (recombinant SUDV sGP protein)	10.09.2019	2019 100 μg/mL		Long term -20°C Short term 4°C						
Secondary Antibody	09.10.2020-B	538 μg/mL	72 μL	Long term -20°C Short term 4°C						
Detection Reage	ent	500 μg/mL	20 μL	4°C						
TMB one-step su	ubstrate	N/A	15 mL	4°C						

3. Reagents required but not included in the kit:

- DPBS 1X, sterile (MediaTech/Corning cat# 21-031-CM) stored at ambient temperature, for diluting coating antigen
- StartingBlock T20 (PBS) Blocking Buffer (Pierce/Thermo cat# 37539) stored at 2-8C, for blocking and also as diluent for standard, samples, detection antibody, and tertiary antibody
- DPBS powder (MediaTech/Corning cat# 55-031-PB) stored at 2-8C, for preparing ELISA Wash Buffer
- TWEEN-20 (Acros cat# 23336-0010), stored at ambient temperature, for preparing ELISA Wash Buffer
- Deionized water

4. Materials required but not included in the kit:

- MaxiSorp flat bottom, polystyrene, 96-well plates (Nunc cat# 439454)
- Polypropylene TiterTubes, maximum volume for each tube = 1 mL (Bio-Rad cat# 223-9391) or equivalent, used to prepare standard and sample dilutions
- Microplate sealing film
- Polypropylene 15 mL and 50 mL conical tubes
- Reagent reservoirs
- Absorbent papers

5. Equipment required:

- Automatic plate washer (example: BioTek ELx450)
- Plate reader with capability of measuring absorbance at 650 nm (example: Molecular Devices plate reader)
- Software for graphing the standard as a 4PL curve and for calculating the unknown samples from the standard curve (example: Softmax software)
- Single-channel and multi-channel pipettes

6. Assay Procedure:

- 1. Prepare Capture antibody solution to target 5 μg/mL
 - Briefly spin the Capture Antibody vial and gently mix by pipetting up and down
 - Dilute 1:91 in DPBS 1X
 - Example: For one full plate, add 123 μL Capture antibody at 453 μg/mL to 11 mL of DPBS 1X
- Add 100 μL/well of Capture antibody solution to the MaxiSorp plate. Cover plate using plate sealing film. Incubate covered plate overnight at 2-8C.
- 3. The following day, equilibrate plate and StartingBlock Buffer to ambient temperature for at least 15 min.
- 4. Empty contents from the plate and wash 3 times (each time 300 μ L/well) with Wash Buffer using an automatic plate washer or multi-channel pipette.
- 5. Add 200 μ L/well of StartingBlock Buffer to block non-specific binding. Incubate for at least 45 min at ambient temperature.
- 6. During blocking step, prepare dilutions of STANDARD and UNKNOWN test samples in TiterTubes.

a. STANDARD

- Briefly spin the Standard vial
- First dilution = 1:100 to target 1 μg/mL

Add 6.0 μ L STANDARD at 100 μ g/mL to 594 μ L StartingBlock Buffer. Use a new pipet tip to gently mix by pipetting up and down.

- Serial 1:2.5-fold dilutions
 - Transfer 200 μL from the previous dilution to 300 μL StartingBlock Buffer
 - Discard pipet tip
 - Use a new pipet tip to gently mix by pipetting up and down
 - Repeat for subsequent dilutions

b. UNKNOWN

- Prepare dilutions using StartingBlock Buffer at dilution factors determined by the end user
- 7. Empty contents from the plate and wash 3 times (each time 300 μ L/well) with Wash Buffer using automatic plate washer or multichannel pipette.
- 8. Use multi-channel pipettor to transfer 100 μ L/well of STANDARD or UNKNOWN dilutions from TiterTubes to duplicate wells in MaxiSorp plate. Change pipet tips appropriately to avoid cross-contamination. Cover plate with plate sealing film. Incubate for 1 hour at ambient temperature.
- At the end of the 1-hour incubation step, prepare Secondary Antibody solution to target 3 μg/mL
 - Briefly spin the Secondary Antibody vial
 - Dilute 1:179 in StartingBlock Buffer
 - Example: For one full plate, add 62 μL of Secondary Antibody at 538 μg/mL to 11 mL StartingBlock Buffer

- 10. Empty contents from the plate and wash 3 times (each time 300 μ L/well) with Wash Buffer using automatic plate washer or multichannel pipette.
- 11. Add 100 µL/well of Secondary Antibody solution to plate. Cover plate with plate sealing film. Incubate for 1 hour at ambient temperature.
- 12. At the end of the 1-hour incubation step, prepare Detection Reagent solution
 - Briefly spin the Detection Reagent vial
 - Dilute 1:8000 in StartingBlock Buffer:
 - STEP 1 = 1:1000 = Add 5 μL of Detection Reagent to 5 mL StartingBlock Buffer
 - STEP 2 = 1:8 = For one full plate, add 1.5 mL of 1:1000 dilution of Detection Reagent to 10.5 mL StartingBlock Buffer
- 13. Empty contents from the plate and wash 3 times (each time 300 μ L/well) with Wash Buffer using automatic plate washer or multichannel pipette.
- 14. Add 100 μ L/well of Detection Reagent solution to plate. Cover plate with plate sealing film. Incubate for 1 hour at ambient temperature, shielded from light. During this time, equilibrate TMB substrate to ambient temperature, shielded from light.
- 15. Empty contents from the plate and wash 3 times (each time 300 μ L/well) with Wash Buffer using automatic plate washer or multichannel pipette.
- 16. Add 100 μ L/well of TMB substrate. Incubate plate at ambient temperature, shielded from light. Start timer for 30 min color development.

- 17. Immediately following the 30 min color development, place plate in the plate reader programmed to shake the plate for 5 sec prior to end point read at 650 nm wavelength.
- 18. Prepare a standard curve from the data produced from the serial dilutions with concentrations on the x axis (log scale) vs. absorbance on the y axis (linear). Interpolate the concentration of the unknown samples from the standard curve.

Notes regarding plate washing:

- ELISA Wash Buffer (1X DPBS + 0.05% TWEEN-20):
 - Dissolve one bottle of DPBS powder in deionized water to prepare 10 liters of 1X DPBS
 - Add 5 mL TWEEN-20 to 10 L of 1X DPBS
 - Gently mix
- Use BioTek plate washer model ELx405, "COSTAR_FLAT" program (Number of cycles: 3; Volume wash buffer: 300 μL/well).
- Empty the MaxiSorp plate's content into biohazard container and blot on paper towels
- Wash plate using "COSTAR FLAT" program
- Tap plate on paper towels to remove any residual liquid.
- Immediately add solution to the wells. Do not let the wells dry for extended time.

7. Example Template and Standard Curve

	EXAMPLE OF PLATE TEMPLATE												
	1	2	3	4	5	6	7	8	9	10	11	12	
A	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	STD	
B	1000	400	160	64.0	25.6	10.2	4.10	1.64	0.655	0.262	0.105	0	
C	Unk1	Unk1	Unk2	Unk2	Unk3	Unk3	Unk4	Unk4	Unk5	Unk5	Unk6	Unk6	
D	Dil 1	Dil 2	Dil1	Dil2									
E	Unk7	Unk7	Unk8	Unk8	Unk9	Unk9	Unk10	Unk10	Unk11	Unk11	Unk12	Unk12	
F	Dil 1	Dil 2	Dil1	Dil2									
G	Unk13	Unk13	Unk14	Unk14	Unk15	Unk15	Unk16	Unk16	Unk17	Unk17	Unk18	Unk18	
H	Dil 1	Dil 2	Dil1	Dil2									

EXAMPLE OF STANDARD CURVE

Example of a standard curve (4PL)

$$A = 0.0592$$

$$B = 0.927$$

$$C = 15.2 \text{ ng/mL}$$

$$D = 3.06$$

DATA ANALYSIS

Softmax software is used to calculate the ng/mL of the UNKNOWN based on the 4PL standard curve using the following equation:

$$X = C * \left(\frac{A - Y}{Y - D} \right)^{(1/B)}$$

X = ng/mL of SUDV soluble GP

Y = Absorbance Value (OD 650 nm)

A = Lower asymptote

B = Slope

C = Inflection point

D = Upper asymptote